
Advanced RbScript 

by Thomas Tempelmann

Thomas Tempelmann | RbScript 201



Advanced RbScript
Topics handled in this session
• First part

• Pausing a script that is waiting for an event 
using a semaphore

• Killing a thread that is suspended by a 
semaphore

• Catching exceptions in scripts

• Second part

• Exchanging object between the main program 
and its scripts

Thomas Tempelmann | RbScript 201



Pausing a script
• Situation:
• A script has to wait for input that it can not 

get immediately

• Examples:
• An event driven script that keeps running in 

a loop and waits for being told what to do

• A script may invoke an operation through a 
Context provided method that shall only 
return when an Event handler gets called 
(asynchronous network operations)

Thomas Tempelmann | RbScript 201



Pausing a script
• When the script makes a call to a 

Context-provided method, that method 
cannot return immediately because it 
must wait for the event to happen first.

• To achieve this, a Semaphore is used. It 
allows us to stop suspend execution of 
the method and instead have other 
program code run. Once the event we are 
waiting for occurs, we can release the 
semaphore to let the method continue

Thomas Tempelmann | RbScript 201



Pausing a script
• In order to use a semaphore, we have to 

run the script in a separate process 
(Thread).

Thomas Tempelmann | RbScript 201



RbScript example
dim res as String

do
  res = Input ("gimme a cookie")
  if res = "cookie" then
    print "  yummy!"
  else
    print "  bah!"
  end
loop until res = "stop"

Thomas Tempelmann | RbScript 201



Code to invoke the script
// prepare the semaphore
ScriptLock = new Semaphore
ScriptLock.Signal

// run the script
RbScript1.Run ()

Thomas Tempelmann | RbScript 201



Script’s input processing
// this gets called when the script calls the Input method:

Function RbScript1.Input (prompt As String) As String
  ScriptLock.Signal
  return InputForScript
End Function

// this we call when we have input for the script:

Sub ResumeScriptWithInput (inputMsg as String)
  InputForScript = inputMsg
  ScriptLock.Release
End Sub

Thomas Tempelmann | RbScript 201



Killing a suspended thread
• Situation:
• The script’s thread is still running (waiting) 

when its environment (window or 
application) is closing. This may lead to 
unexpected effects including raised 
exceptions.

• The Kill method of the Thread class does 
not work if the thread is locked by a 
semaphore, as it is in our case.

Thomas Tempelmann | RbScript 201



Killing a suspended thread
• The solution is to unlock the semaphore 

and have the freed code raise a 
ThreadEndException from inside the 
thread.

• The exception will have the effect that the 
script’s loop is exited and eventually will 
end the script and return from the 
RbScript.Run() call in the thread. This in 
turn ends the thread properly.

Thomas Tempelmann | RbScript 201



Catching exceptions in scripts
• Situation:
• When an exception occurs in a script that 

is not getting caught, the documentation 
suggests that the script’s RuntimeError 
event gets called with information about the 
exception, similar to the App’s 
UnhandledException event, then the script 
ends and returns normally from the 
RbScript.Run() call.

• However, this is not happening.

Thomas Tempelmann | RbScript 201



Catching exceptions in scripts
• Situation (cont.):
• Instead, what happens is this:
• The RuntimeError event is not called

• The Run() method does not return normally 
but instead an exception is propagated.

• In some cases, the application may then 
crash.

• This is a confirmed bug and present in RB 
5.5.5 as well as in 2006r1

Thomas Tempelmann | RbScript 201



Catching exceptions in scripts
• Solution (work-around):
• The script has to have a catch-all wrapper 

around its main code.

• Problem is that it must not use a variable to 
learn the type of the exception - that would 
cause another crash. This means that we 
can only learn that an exception has 
occurred, but not which type it is, nor get a 
stack trace.

• We use the Context to set a flag for 
reporting this incident to the Run() caller.

Thomas Tempelmann | RbScript 201



End of Part 1
• The project EventDrivenScript.rbp 

contains a sample application using the 
aforementioned techniques.



Passing objects to the script
• Goals:
• We want to be able to let a script use 

objects in the same way we use them in 
our main program.

• In particular, the script shall have access to 
some of the same data we access in our 
main program.

Thomas Tempelmann | RbScript 201



Example of use in a script
dim dir, f as FolderItem
dim idx as Integer

dir = DesktopFolder ()

for idx = 1 to dir.Count ()
  f = dir.TrueItem (idx)
  Print f.Name
next

Thomas Tempelmann | RbScript 201



Passing objects to the script
• Key steps to the solution:
• We automatically add a set of classes to 

the user script that provide the classes and 
functions.

• Those added classes communicate with 
the main program through specially 
provided Context methods that the 
common part of the script does not officially 
know about.

Thomas Tempelmann | RbScript 201



Passing objects to the script
• Key steps to the solution (cont.):
• The added classes in the script create 

proxy instances of the main app’s objects.

• To connect the app’s objects to their script 
counterparts, Hash codes are used...

• These hash codes are Integer values that 
are unique to every existing object.

Thomas Tempelmann | RbScript 201



Passing objects to the script
• Key steps to the solution (cont.):
• When the script wants to create a proxy 

instance of a main app’s object, it calls a 
context method, which finds the object and 
returns the object’s hash value to the caller 
in the script.

• Later, if the script wants to access a 
property or member of such a proxy class, 
another context method is called along with 
the hash value for identification of the main 
app’s obect.

Thomas Tempelmann | RbScript 201



Passing objects to the script
• Key steps to the solution (cont.):
• A Dictionary is used on the main app side 

to remember the objects the script proxy 
has requested.

• The proxy class implements the Destructor 
method from which it tells the main app 
(though another Context method) to 
release the object again, i.e. remove it from 
the Dictionary.

Thomas Tempelmann | RbScript 201



Passing objects to the script
• The project ScriptClassProxies.rbp 

contains a sample application using this 
technique.

My thanks go to Joe Ranieri (aka. SirG3) for introducing me to this elegant 
way of using RbScript with complex data structures.

Thomas Tempelmann | RbScript 201



Demonstration

Q & A

 

Thomas Tempelmann | RbScript 201


